Un nuovo capitolo nella rilevazione della radiazione ionizzante è stato scritto grazie alla realizzazione, per la prima volta, di scintillatori plastici ultraveloci e a basso costo mediante stampa 3D. Questo straordinario risultato è stato raggiunto nell'ambito del progetto SHINE (Plastic Scintillators Phantom via Additive Manufacturing Techniques), finanziato dalla Commissione Scientifica Nazionale 5 (CSN5) dell'Istituto Nazionale di Fisica Nucleare (INFN).
Gli scintillatori sono stati ottenuti utilizzando materiali compositi innovativi come la perovskite e il polisilossano fotopolimerizzabile, dimostrando il potenziale di queste tecnologie per la creazione di dispositivi avanzati e versatili.
Il progetto è stato possibile grazie alla collaborazione sinergica tra gruppi di ricerca di prestigiose istituzioni quali il CNR Nanotec, l'INFN, il CERN di Ginevra, e vari dipartimenti delle università di Salento, Padova, Trento e Bari. I risultati di questo lavoro pionieristico sono stati recentemente pubblicati sulla rivista scientifica Advanced Functional Materials (https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202417653).
"Gli scintillatori plastici sono tra i materiali più utilizzati nella rilevazione della radiazione ionizzante, grazie alla loro versatilità. Le loro applicazioni spaziano dalla fisica delle alte energie alla medicina, all'industria e alla sicurezza," spiega Anna Paola Caricato, responsabile nazionale del progetto e docente dell'Università del Salento. "La combinazione di materiali innovativi come le perovskiti, note per le loro eccezionali proprietà optoelettroniche, e i polisilossani fotopolimerizzabili ha consentito di creare scintillatori con geometrie complesse e prestazioni avanzate."
"Le perovskiti, solitamente associate a celle solari, si sono rivelate promettenti come rivelatori di radiazione grazie alla loro tolleranza al danneggiamento da radiazione e al loro elevato numero atomico. Nel progetto SHINE, le polveri di perovskite sono state sintetizzate mediante tecniche meccano-chimiche e incorporate in resine fotocurabili per creare scintillatori ad alta efficienza con tempi di risposta inferiori al nanosecondo" aggiunge la Dott.ssa Aurora Rizzo del CNR Nanotec.
L'integrazione delle perovskiti in resine fotopolimerizzabili ha permesso di ottenere materiali stabili e adatti alla stampa 3D tramite stereolitografia. "Questo approccio ha reso possibile la produzione di dispositivi con geometrie complesse e personalizzate," sottolinea la Prof.ssa Carola Corcione dell'Università del Salento. Un ulteriore traguardo è stato raggiunto con lo sviluppo di resine polisilossaniche fotocurabili, caratterizzate da elevata resistenza alle radiazioni e flessibilità, come descritto in un altro lavoro pubblicato su Applied Materials Today (https://www.sciencedirect.com/science/article/pii/S2352940724002580).
"I nuovi scintillatori hanno dimostrato una resa di luce pari a oltre il 40% di quella dei materiali commerciali, rendendoli adatti a molteplici applicazioni, dalla protonterapia alla fisica delle alte energie," spiega la Prof.ssa Sandra Moretto dell'Università di Padova. Inoltre, il design flessibile e resistente offre nuove possibilità per la dosimetria clinica risolta in tempo reale. Collaborazione e Impatto Futuro "Questo risultato è il frutto di un impegno congiunto di ricercatori di diverse discipline e istituzioni," afferma il Prof. Gianluca Quarta dell'Università del Salento. Il progetto SHINE apre la strada a nuove tecnologie per i futuri collisori di particelle e per applicazioni mediche avanzate, con un impatto significativo in ambiti che vanno dalla sicurezza alla diagnosi e terapia. Il Presidente della CSN5, Prof. Alberto Quaranta, conclude: "La possibilità di stampare scintillatori con geometrie personalizzate rappresenta un punto di svolta per il settore, migliorando le prestazioni e riducendo i costi. Questo risultato riflette l'impegno dell'INFN nel promuovere la ricerca interdisciplinare e lo sviluppo di tecnologie innovative."
(Nella foto da sinistra: Carola Corcione, Anna Paola Caricato, Aurora Rizzo, Antonella Giuri).
Rilevazione della radiazione ionizzante, realizzati anche a Lecce innovativi scintillatori stampati in 3D
